binomische Formeln

binomische Formeln
binomische Formeln,
 
die Formeln für die Produkte und Potenzen von Binomen, wobei gilt:
 
(a + b) · (ab) = a2b2,
 
(a ± b)2 = a2 ± 2 ab + b2,
 
(a ± b)3 = a3 ± 3 a2b + 3 ab2 ± b3 usw.;
 
die allgemeine Formel liefert der binomische Lehrsatz.

Universal-Lexikon. 2012.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Binomische Formeln — Die Binomischen Formeln sind in der elementaren Algebra verbreitete Formeln zur Darstellung und zum Lösen von Quadrat Binomen. Sie werden als Merkformeln verwendet, die zum einen das Ausmultiplizieren von Klammerausdrücken erleichtern, zum… …   Deutsch Wikipedia

  • Binomische Formel — Die Binomischen Formeln sind in der elementaren Algebra verbreitete Formeln zum Umformen von Produkten aus Binomen. Sie werden als Merkformeln verwendet, die zum einen das Ausmultiplizieren von Klammerausdrücken erleichtern, zum anderen erlauben… …   Deutsch Wikipedia

  • Binomische Gleichung — Die Binomischen Formeln sind in der elementaren Algebra verbreitete Formeln zur Darstellung und zum Lösen von Quadrat Binomen. Sie werden als Merkformeln verwendet, die zum einen das Ausmultiplizieren von Klammerausdrücken erleichtern, zum… …   Deutsch Wikipedia

  • Exponent (Mathematik) — Das Potenzieren ist wie das Multiplizieren seinem Ursprung nach eine abkürzende Schreibweise für eine wiederholte mathematische Rechenoperation. Wie beim Multiplizieren ein Summand wiederholt addiert wird, so wird beim Potenzieren ein Faktor… …   Deutsch Wikipedia

  • Hochrechenen — Das Potenzieren ist wie das Multiplizieren seinem Ursprung nach eine abkürzende Schreibweise für eine wiederholte mathematische Rechenoperation. Wie beim Multiplizieren ein Summand wiederholt addiert wird, so wird beim Potenzieren ein Faktor… …   Deutsch Wikipedia

  • Hochzahl — Das Potenzieren ist wie das Multiplizieren seinem Ursprung nach eine abkürzende Schreibweise für eine wiederholte mathematische Rechenoperation. Wie beim Multiplizieren ein Summand wiederholt addiert wird, so wird beim Potenzieren ein Faktor… …   Deutsch Wikipedia

  • Null hoch null — Das Potenzieren ist wie das Multiplizieren seinem Ursprung nach eine abkürzende Schreibweise für eine wiederholte mathematische Rechenoperation. Wie beim Multiplizieren ein Summand wiederholt addiert wird, so wird beim Potenzieren ein Faktor… …   Deutsch Wikipedia

  • Pascal'sches Dreieck — Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden Einträge ist. Dieser Sachverhalt wird durch die Gleichung… …   Deutsch Wikipedia

  • Pascal'sches Koeffizienten-Schema — Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden Einträge ist. Dieser Sachverhalt wird durch die Gleichung… …   Deutsch Wikipedia

  • Pascal-Dreieck — Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden Einträge ist. Dieser Sachverhalt wird durch die Gleichung… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”